Tuesday, December 2, 2025

High Performance Computing (HPC) | Deep Dive.

 

A deep dive into High Performance Computing (HPC).

Scope:

  •        Architecture,
  •        Components,
  •        Workloads,
  •        Scheduling,
  •        Storage,
  •        Networking,
  •        Cloud HPC,
  •        DevOps/DevSecOps integration, 
  •        Modern trends like GPU computing,
  •        AI-driven optimization.

Breakdown:

  •        HPC Core Concepts,
  •        HPC Architecture Overview,
  •        HPC Networking,
  •        HPC Storage Systems,
  •        HPC Workload Scheduling & Resource Management,
  •        HPC Software Stack,
  •        HPC & Cloud,
  •        HPC vs Cloud Native / Kubernetes,
  •        HPC Security (DevSecOps Perspective),
  •        HPC Monitoring & Observability,
  •        HPC Use Cases,
  •        Modern Trends in HPC,
  •        HPC for DevOps/DevSecOps/Cloud Engineers.

Intro:

  •        High Performance Computing (HPC) refers to the practice of aggregating computing power to solve large-scale, complex problems at extremely high speeds.
  •        High Performance Computing (HPC) often involves parallel processing across clusters of powerful CPUs, GPUs, or specialized accelerators.
  •        HPC is a foundation for scientific research, engineering simulations, AI model training, financial modeling, and large-scale analytics.

1. HPC Core Concepts

1.1 Parallelism Types

1.     Shared-Memory Parallelism (SMP)

  •    Multiple cores share the same memory space.
  •    Typically implemented via OpenMP.

2.     Distributed-Memory Parallelism

  •    Each node has its own memory.
  •    Nodes communicate via high-speed interconnects like InfiniBand.
  •    Implemented via MPI (Message Passing Interface).

3.     Hybrid Parallelism

  •    Combination of MPI + OpenMP (or CUDA/OpenACC for GPUs).
  •    Common in large scientific simulations.

2. HPC Architecture Overview

2.1 Node-Level Architecture

A typical compute node includes:

  •         Multi-core CPU (Intel Xeon, AMD EPYC)
  •         High-bandwidth RAM
  •         Optional GPU/Accelerators (NVIDIA A100/H100, AMD MI250)
  •         High-speed NIC (100–400 Gbps)

2.2 Cluster Architecture

An HPC cluster typically consists of:

1.     Head/Login Node

  •    User access, job submission, environment setup.

2.     Compute Nodes

  •    Run jobs; large numbers (hundreds to thousands).

3.     GPU Nodes

  •    Specialized for AI/ML, deep learning, compute-heavy kernels.

4.     Storage Nodes

  •    Parallel file systems (Lustre, GPFS).

5.     Interconnect

  •    High-speed, low-latency networks (InfiniBand HDR/EDR).

6.     Management Nodes

  •    Provisioning, monitoring, orchestration.

3. HPC Networking

3.1 InfiniBand

  •         High bandwidth: 100 Gbps to 400 Gbps.
  •         Extremely low latency (<1µs).
  •         Critical for MPI workloads.

3.2 Ethernet in HPC

  •         25/40/100/400 Gbps Ethernet.
  •         Used more in cloud-based HPC systems.

4. HPC Storage Systems

4.1 Parallel File Systems

Used for large-volume, high-throughput workloads:

  •         Lustre
  •         GPFS / IBM Spectrum Scale
  •         BeeGFS

4.2 Burst Buffers

  • High-speed SSD layer between compute nodes and storage.

4.3 Object Storage

Cloud-oriented HPC uses:

  •         Amazon S3
  •         Azure Blob
  •         Google Cloud Storage

5. HPC Workload Scheduling & Resource Management

5.1 Job Schedulers

Schedulers allocate compute resources, queue jobs, and optimize cluster usage:

  •         SLURM (industry standard)
  •         PBS Pro / Torque
  •         LSF
  •         Grid Engine

5.2 Scheduler Features

  •         Resource allocation (CPU, GPU, memory)
  •         MPI job orchestration
  •         Fair-share scheduling
  •         Preemption
  •         Job arrays
  •         Accounting (SAcct for SLURM)

6. HPC Software Stack

Programming Models

  •         MPI (Distributed)
  •         OpenMP (Shared)
  •         CUDA (NVIDIA GPUs)
  •         HIP/ROCm (AMD GPUs)
  •         OpenACC (Portable acceleration)
  •         SYCL/DPC++ (Intel GPUs and heterogeneous systems)

Compilers

  •         GCC
  •         Intel OneAPI
  •         NVIDIA HPC SDK
  •         pgcc/pgfortran

Libraries

  •         BLAS / LAPACK
  •         ScaLAPACK
  •         FFTW
  •         PETSc
  •         Tensor libraries for AI/ML

7. HPC and Cloud

  • Cloud HPC is now common due to elasticity and high availability.

AWS HPC Components

  •         EC2 H-series (HPC-optimized)
  •         ParallelCluster
  •         FSx for Lustre
  •         EFA (Elastic Fabric Adapter) – HPC-grade networking
  •         Batch + Slurm integration

Azure HPC

  •         HB, HC, NDv2 (GPU)
  •         Cray supercomputers on Azure

GCP HPC

  •         HPC VM families
  •         Slingshot networking (Cray)
  •         Filestore High Scale

Cloud HPC Use Cases

  •         Burst workloads
  •         Scalable AI/ML training
  •         Large simulations without on-prem CapEx

8. HPC vs Cloud Native / Kubernetes

Kubernetes is not natively optimized for HPC MPI-style jobs. However, HPC and K8s are converging via:

  •         KubeFlow
  •         Volcano Scheduler (batch/HPC workloads)
  •         Run:AI
  •         NVIDIA GPU Operator

NB:

  • Still, traditional HPC workloads favor SLURM + bare metal or high-performance VM clusters.

9. HPC Security (DevSecOps Perspective)

Key security focus areas:

  •         Node hardening
  •         Encrypted storage and communication
  •         IAM integration (LDAP, AD, AWS IAM)
  •         Zero-trust for multi-tenant research clusters
  •         Secret management for distributed jobs
  •         Container security (Singularity/Apptainer)
  •         Network segmentation for MPI traffic

Containers in HPC

  •         Apptainer/Singularity is widely adopted:
    •    Portable
    •    Secure (non-root containers)
    •    Reproducible for scientific workflows

10. HPC Monitoring and Observability

Tools include:

  •         Grafana + Prometheus
  •         Slurm accounting & metrics exporters
  •         Elastic Stack
  •         NVIDIA DCGM for GPU telemetry
  •         InfluxDB integrations
  •         Ganglia (legacy but still in use)

11. HPC Use Cases

Scientific & Engineering

  •         Computational Fluid Dynamics (CFD)
  •         Weather and climate modeling
  •         Molecular dynamics (GROMACS, LAMMPS)
  •         Quantum chemistry (Gaussian, ORCA)
  •         Astrophysics simulations

AI / Machine Learning

  •         Massive model training on GPU clusters
  •         Distributed deep learning (Horovod, DeepSpeed)

Business & Enterprise

  •         Risk modeling and Monte Carlo simulations
  •         Fraud detection
  •         Large-scale data analytics

12. Modern Trends in HPC

GPU-first architectures
AI accelerators (TPUs, AWS Trainium, Habana Gaudi)
Exascale computing
Serverless HPC (emerging concept)
Quantum HPC hybrid workloads

13. HPC for DevOps/DevSecOps/Cloud Engineers

  • As someone in DevOps/DevSecOps/Cloud Engineering, HPC ties into twtech world through:

Infrastructure-as-Code for HPC

  •         Terraform for HPC cluster provisioning
  •         AWS ParallelCluster automation
  •         Azure CycleCloud templating

CI/CD for Scientific Workflows

  •         Building and validating scientific codes
  •         Containerizing HPC applications

Observability & Telemetry

  •         Cluster efficiency tracking
  •         GPU utilization metrics
  •         Job success/failure analytics

Security automation

  •         Compliance
  •         Key management
  •         Cluster isolation

No comments:

Post a Comment

Amazon EventBridge | Overview.

Amazon EventBridge - Overview. Scope: Intro, Core Concepts, Key Benefits, Link to official documentation, Insights. Intro: Amazon EventBridg...