Monday, December 1, 2025

API Gateway Integration with Kinesis Data Streams, Kinesis Data Firehose & S3 | Deep Dive.

Here is twtech Deep Dive into API Gateway integration with Kinesis Data Streams, Kinesis Data Firehose, and Amazon S3.

Scope:

  •        Data flow,
  •        Components,
  •        Use cases, and
  •        Best practices.

Breakdown:

  •        Overview,
  •        Components & Flow,
  •        Amazon API Gateway,
  •        Kinesis Data Streams (Real-Time, Low-Latency Stream Processing),
  •        Kinesis Data Firehose (Fully Managed Ingestion Storage/Analytics),
  •        Amazon S3 (Long-Term Durable Storage),
  •        End-to-End Architecture,
  •        API Gateway Kinesis Integration Details,
  •        Choosing Between Data Streams vs Firehose,
  •        Using both Data Streams & Firehose,
  •        Security Considerations,
  •        Best Practices.

Overview

  • API Gateway integration with Kinesis Data Streams, Kinesis Data Firehose, and Amazon S3 is used when twtech wants to capture high-volume, real-time API data (events, logs, telemetry, metrics, IoT payloads, analytics data) then store the data or stream it with low latency, high durability, and real-time processing capabilities.

 Components & Flow

1. Amazon API Gateway

API Gateway provides:

  •         A fully managed public REST/HTTP endpoint
  •         Authentication (IAM, Cognito, Lambda authorizer, API keys)
  •         Request validation & throttling
  •         Payload transformation (VTL/Passthrough)
  •         Direct service integration with:
    •    Kinesis Data Streams
    •    Kinesis Data Firehose

Two integration modes:

  1.      Direct AWS Service Integration (no Lambda)
  2.      Lambda Proxy Integration then Kinesis

2. Kinesis Data Streams (Real-Time, Low-Latency Stream Processing)

NB:

API Gateway can push requests directly into a Kinesis Data Stream using AWS service integration.

 Flow:

  1.      API Gateway receives request
  2.      API Gateway signs the request using SigV4
  3.      Record is inserted into a specific Kinesis Stream shard
  4.      Consumers process records in real time:

    •    AWS Lambda consumer
    •    Kinesis Client Library apps (EC2/ECS)
    •    Kinesis Data Analytics
    •    Kinesis Firehose S3

 Use cases:

  •         High-volume clickstream ingestion
  •         IoT telemetry
  •         Financial tick data
  •         Live metrics/analytics pipelines
  •         Machine-learning data ingestion

3. Kinesis Data Firehose (Fully Managed Ingestion Storage/Analytics)

NB:

Firehose is a simpler option when twtech doesn’t want custom stream processing.

API Gateway Kinesis Firehose S3/Data Lake Store/OpenSearch/Custom endpoints via Lambda

  •         S3
  •         Redshift
  •         OpenSearch
  •         Data Lake storage
  •         Custom endpoints (via Lambda transformation)

 Flow:

  1.      API Gateway receives an event
  2.      Writes JSON payload into Firehose
  3.      Firehose buffers (size/time-based)
  4.      Delivers compressed/collated files to S3 (or other destination)

 Optional: Lambda transformations

Firehose can invoke a Lambda function for:

  •         PII redaction
  •         JSON Parquet conversion
  •         Data normalization
  •         Data flattening

4. Amazon S3 (Long-Term Durable Storage)

Kinesis Firehose typically stores data into S3 in:

  •         Snappy-compressed Parquet
  •         GZIP JSON
  •         ORC

Ideal for:

  •         Data lakes
  •         Audit logs
  •         API analytics
  •         Cost-efficient retention

End-to-End Architecture

Flow 1: API Gateway Kinesis Data Streams Consumers Optional S3

Flow 2: API Gateway Kinesis Firehose S3


API Gateway → Kinesis Integration Details

API Gateway Request Template Sample (PutRecord)

# json
{
  "StreamName": "twtech-stream",
  "Data": "$util.base64Encode($input.body)",
  "PartitionKey": "$context.requestId"
}

IAM role:

API Gateway must assume a role with:

kinesis:PutRecord
kinesis:PutRecords
firehose:PutRecord
firehose:PutRecordBatch

 Choosing Between Data Streams vs Firehose

Feature

Kinesis Data Streams

Kinesis Firehose

Latency

~70 ms

1–5 min buffer

Real-time processing

Yes

No

Custom compute

Lambda, KCL

Optional Lambda

Storage destinations

Flexible

Mostly S3/Redshift/OpenSearch

Throughput scaling

Manual shard scaling

Fully managed

Ideal for

Real-time apps

Data ingestion and storage

 Using both Data Streams & Firehose

Security Considerations

  •         API Gateway IAM auth + SigV4 request signing
  •         KMS encryption for Streams & Firehose
  •         S3 bucket encryption + Block Public Access
  •         Private API Gateway with VPC endpoint optional
  •         WAF integration to filter malicious calls

 Best Practices

  •         Use partition keys that evenly distribute data
  •         Use Firehose for S3-only pipelines (simpler, cheaper)
  •         Use Streams for real-time consumer apps
  •         Enable DLQs (dead-letter queues) in Firehose
  •         For heavy workloads enable API Gateway throttling

 

No comments:

Post a Comment

Amazon EventBridge | Overview.

Amazon EventBridge - Overview. Scope: Intro, Core Concepts, Key Benefits, Link to official documentation, Insights. Intro: Amazon EventBridg...