Thursday, July 24, 2025

SQS Vs SNS Vs KDS / Firehose | Overview.

Simple Queue Serivice (SQS) Vs Simple Notification Service Vs Kinesis data Streams/Firehose - Overview.

Scope:

  • Intro,
  • Overview,
  • Use Case Scenarios,
  • Detailed Comparison,
  • Best Fit Summary,
  • when to Combine Them,
  • Insights.

Intro:

  • Here's twtech  comparison of Amazon SQS, SNS, and Kinesis, highlighting their key differences and best use cases:

 Overview

Feature

SQS (Simple Queue Service)

SNS (Simple Notification Service)

Kinesis

Type

Message Queue (Pull)

Pub/Sub Notification (Push)

Data Streaming Platform

Pattern

Point-to-Point

Publish-Subscribe

Real-time data streaming

Message Flow

Producer Queue Consumer.

Publisher Topic Subscribers.

Producer Stream Consumer.

 Use Case Scenarios

Use Case

Recommended Service

Decoupling microservices or systems

SQS

Broadcasting messages to multiple systems (e.g., SMS, Email, Lambda)

SNS

Real-time analytics or processing high-throughput data streams (e.g., logs, IoT)

Kinesis

 Detailed Comparison

Feature

SQS

SNS

Kinesis

Delivery Type

Pull-based

Push-based

Pull or Enhanced Fan-out

Delivery Guarantee

At-least-once (FIFO supports exactly-once)

At-least-once

At-least-once (manual deduping needed)

Ordering

FIFO queues preserve order

No ordering guarantee

Order per shard

Durability

4-day retention by default (14-day max)

Short-lived (no storage)

24 hrs to 7 days retention

Latency

Low

Very low

Low (milliseconds)

Throughput

High (scales with batch, FIFO has limits)

Very high

Extremely high (designed for large-scale ingestion)

Fan-out

No (1-to-1 delivery)

Yes (1-to-many)

Yes (with enhanced fan-out)

Retry Mechanism

Yes (DLQs supported)

Yes (retry policies)

Yes (checkpointing via consumer apps)

Cost Model

Per request & payload size

Per request & delivery attempt

Per shard-hour + PUT payload units

 Best Fit Summary

Use Case

Best Option

Decoupled task queues (e.g., background jobs, retries)

SQS

Notifications to multiple systems (e.g., SMS + Email + Lambda)

SNS

Real-time log processing, analytics, or ETL pipelines

Kinesis

when to Combine Them

These services are often used together:

  • SNS SQS: Broadcast messages to multiple SQS queues (fan-out pattern).
  • Kinesis + Lambda + SQS: Real-time processing with fallback queues for failed events.

·        A decision tree and architecture diagram for choosing between Amazon SQS, SNS, and Kinesis

twtech Insights:

A decision tree and architecture diagram for SQS, SNS, and Kinesis use cases.
  • Here's twtech decision tree and an architecture diagram.
  • The decision tree helps twtech to choose between Amazon SQS, SNS, and Kinesis based on its use case.

 Decision Tree: Choosing Between SQS, SNS, and Kinesis

                          ┌─────────────────────────────┐
                          │       Does twtech need real-time-data  
                          │         Streaming with analytics?                     │
                          └────────────────────────────┘
                                                                 Yes
                                                                
                                              ┌──────────────┐
                                              │         Use Kinesis       │
                                              └──────────────┘
                                                                
                                                                 No
                          ┌────────────────────────────┐
                          │        Does twtech want to deliver the             │
                          │         Same message to multiple                     │
                          │              consumers (fan-out)?                        │
                          └────────────────────────────┘
                                                                Yes
                                                               
                                            ┌───────────────┐
                                            │           Use SNS             │
                                            │            (fan-out)            │
                                            └───────────────┘
                                                                
                                                                 No
                          ┌────────────────────────────┐
                          │    Does twtech need message queues          │
                          │              with decoupling, retries,                   │
                          │                  and delayed processing?             │
                          └────────────────────────────┘
                                                                Yes
                                                               
                                          ┌───────────────┐
                                          │          Use SQS              │
                                          └───────────────┘
                                                               
                                                                No
                                      ┌──────────────────┐
                                      │          Consider SNS or          │
                                      │            another pattern          │
                                      └───────────────────┘

 Architecture Diagram: Common Usage Scenarios

1. SNS Fan-Out to SQS Queues

       

 Use case: 

  • One message sent to SNS is delivered to multiple consumers (via SQS or Lambda, etc.)

2. Kinesis Stream for Real-Time Processing


 Use case: 

  • High-throughput data ingestion with real-time transformation or analytics.

3. SQS for Decoupling Microservices


Use case

  • Decouple microservices, 
  • retry failed jobs, 
  • buffer traffic.


No comments:

Post a Comment

Amazon EventBridge | Overview.

Amazon EventBridge - Overview. Scope: Intro, Core Concepts, Key Benefits, Link to official documentation, Insights. Intro: Amazon EventBridg...